Followers

Thursday, June 9, 2022

Everything You Need to Know About Fiber Optic Connectors

For high-speed data transmission, optical fiber is a good vehicle but only when the light transmission is efficient across connector assemblies. This translates to the requirement of fiber polishing pad connector end faces to optimize performance. Increasingly, automation of the polishing process is becoming a necessity with the adoption of newer fiber configurations, as well as ever-tightening specifications.



Early physical contact connectors required the spherical forming of their flat end faces as part of the polishing procedure. A four-step process is included under traditional techniques: epoxy removal, ferrule forming, and preliminary and final polishing. For epoxy removal and ferrule forming these steps used aggressive materials that are generally accomplished with diamond polishing films.

Now, the polishing process has developed into a sequence of epoxy removal, followed by rough, intermediate, and final polishing cycles as almost all connectors are manufactured with a pre-radiused end face. One main goal is to avoid excessive disruption of the spherical surface, while still producing a good mating surface. Polished fiber optic connectors then need to conform to a range of performance and geometry-based acceptance criteria.

In two categories the polishing specifications for fiber polishing film connectors are included and they are related to performance and end-face geometry. Back reflection and insertion loss specifications are perhaps the most critical measures of polished end functionality. The latter is the amount of optical power that is lost at the interface between the connectors that usually occur by fiber misalignment, the separation between connections (the air gap), and the finish quality of each connector end. The current standard loss specification is less than 0.5 dB, but less than 0.3 dB is increasingly specified.



Regardless of the connector type, most polishing sequences have now started with aggressive materials, including silicon carbide that removes epoxy and diamond lapping films for beginning and intermediate polishing. These then at the same rate remove both surrounding material and fiber. The last polishing step, however, needs a less aggressive material, such as silicon dioxide, to attack only the fiber. For final fiber polishing liquid using a material that is too aggressive could lead to excessive undercut. The wrong final-polish material can lead to excessive protrusion, then to fiber chipping and cracking during the connector mating process.


Thursday, May 12, 2022

All about Fiber Polisher and Why They Need to Be Preferred

Since the 1990s fiber polishing machine has made big progress. By manual and labor-intensive process, the earliest connector termination job was done and fiber connector polishing was manually done by one single person. However, it needs much higher efficiency due to the development of a fiber-optic network. By adding more operators, the fiber optic patch cord manufacturers generally makeup but still could not catch up with the demand. Fiber connector polishing has met the requirement of high volume, high quality, and consistency until there was the emergence of the current automatic polishing machine.

Fiber Connection Termination is very important for the fiber optic communication system quality. For the whole process of terminating fiber connectors, fiber optic connector polishing is one of the most important steps. It is so because bad polished connectors will increase the insertion loss and back reflection which will make you malfunction.



According to a set of industry-standard and specifications, there is the production of fiber polishing fixture. In a consistent way it can produce large volumes of connectors, and it is even considered to be cost-effective as labor is significantly reduced. The article here is written to help you below is provided certain standards on how to make wise decisions while selecting a perfect fiber polishing machine for your specific requirement

There is a preference for Polishing Machines with Adjustable Pressure

By the combination of the loading pressure and the hardness of the polishing surface, there is the generation of the fiber connector’s finished end-face geometry. The polishing pressure should be adjustable with clearly marked divisions of measurement to optimize the connector end-face.

There is the importance of even the four corner hold-downs. To minimize off-center polishing hold-down fasteners in all four corners of the connector holder evenly distribute film pressure. In case you utilize the center pressure from above, it will allow the possibility of wiggling or vibration of the connector holder. You will increase the vertex offset with this method and it then leads to inconsistent finishes.



You need to consider the polishing pad too. The polishing pad is in conjunction with the four corner hold-downs and it is used to distribute the pressures evenly across the polishing area. Due to the resiliency of the pads, they help in controlling the radius of curvature as the ferrule is pressed into the pad during the polishing process. You need to select the proper fiber polisher according to your need as there are so many pads for different types of connectors.


Wednesday, April 13, 2022

Proper Polishing Fixtures Care for Optical Fiber Polishing Machines

The most critical step to assure high-quality assemblies that meet specifications is perhaps the polishing process in fiber optic cable assembly. That’s why selecting the right optical fiber polishing machine, fiber polishing film, and polishing fixtures are important in meeting your needs. To produce different connector styles, it’s likely that you have several polishing fixtures based on your cable assembly house product offerings.



To your company, the quality of the polishing fixtures is extremely important. To produce a high volume of products with minimal quality issues over the long run, your company will want to maintain these tools considering the high cost of production components and equipment.

For fiber optic polishing, there is a typical fiber polisher. To polish the end faces of fiber optic products, Fiber Optic Polishing Machines are used to minimize signal losses due to scattering. By providing rapid polishing of many different connector styles, Polishing machines can increase productivity.

Proper maintenance of polishing fixtures is essential

With high-precision machining equipment, fiber polishing epoxy fixtures for optical fiber polishing machines are built. Negatively impacting your product quality and polishing process, Fixtures made of aluminum and steel can warp and flex over time. Polishing fixtures made of hardened stainless steel avoid this wear effect on the other hand. However, the risk of rusting is not increased by this as hardened stainless steel contains more iron in the alloy. This is why proper maintenance is very essential.

Onto the polishing fixture with a plastic clamp or latch, the most common fiber optic connectors are locked in addition, which can wear over time if not properly cleaned. The functionality of the polishing machine and product quality are significantly affected by this.



Proper maintenance is very crucial as polishing fixtures are costly. For a long time, you can use your polishing fixtures with daily maintenance with no variation in your fiber optic cable assemblies’ quality level.

For monitoring the quality of your polishing fixture and fiber polishing liquid, an excellent way is to monitor the end-face geometries of polished ferrules. In end-face geometry parameters, any significant deficiencies in the fixture will be reflected.


Tuesday, March 8, 2022

Various Types of Optical Fiber Fusion Splicer



The process of joining two fibers together permanently is Fiber splicing with fusion splicer. Fusion and mechanical splicing are two fiber splicing types.

Two optical fibers are not fused physically in Mechanical splicing, rather inside a sleeve, two fibers are held butt-to-butt with some mechanical mechanism. You will get back reflection and worse insertion loss in mechanical splices as compared to infusion splices. For fiber testing and emergency repairs, Mechanical splicing is mostly used.  

The second type of splicing is called Fusion splicing. By an electric arc, two fibers are welded (fused) together in fusion splicing. As it provides for virtually no back reflection and the lowest insertion loss, Fusion splicing is the most widely used splicing method. The most reliable joint between two fibers is offered by Fusion splicing. Fusion splicing is done with an automatic machine called a fusion splicer.

Fusion splicer

As we said above, the machine used to weld (fuse) two optical fibers together is a fusion splicer. Fusion splicing is the other name for this process. In alignment fixtures, the fiber ends are placed, cleaved, and prepared on the fusion splicer from the fiber tool kit. The fiber ends are brought together after being heated with electrodes and fused at the press of a button.

Fusion splicers are automatic machines that you need to either set the splicing parameters yourself or choose factory recommended settings.

Core alignment

To inspect the two cleaved fibers, Optical fiber core alignment fusion splicers use multiple cameras before fusing. Multiple axis movement of the fibers is allowed by them.



Allowing users to store separate recipes or programs, Core alignment splicers are high-end units where factors such as temperature and splice time can be customized highly. Such high-end fusion splicers visually display the splice after magnifying it, and to line up the fibers, they use active core alignment.

Resulting in a typical splice loss of only 0.02dB, this provides for precise fiber alignment. For all single-mode fiber applications, this level of precision is required and the performance of multimode fiber is also enhanced. Core alignment is usually used by Ribbon splicers. The fiber cleaner is also useful.

Friday, February 11, 2022

Optical Fiber Fusion Splicing and its Benefits

Optical fiber fusion splicing

Optical fiber fusion splicing is a welded joint that is formed between two optical fibers. Compared with another temporary joint such as a mechanical splice fiber splicer is a permanent, low-loss, high-strength joint. In the optical network, optical fiber fusion splices play a crucial role.



Fusion Splicing Process

The main goal is to create a joint with minimum insertion loss yet with mechanical strength and long-term reliability that matches well with the fiber itself.

The ideal process needs to be fast, inexpensive and it should not need expensive equipment. But in reality, among different applications and requirements, the process requires trade-offs. For example, long-term reliability is the most important goal for a fiber stripper and undersea telecommunications.

The Benefits

For interconnecting fibers such as fiber optic connectors and mechanical splicing, there are other approaches too. Compared to these two, fusion splicing has many benefits as explained below.

It provides the lowest insertion loss

It can even withstand extremely high temperature changes

It is one with the Lowest back reflection (optical return loss ORL)

It is very compact

Quite Permanent

It also prevents dust and other contaminants from entering the optical path

Provides Highest mechanical strength

The major steps involved in the process of fusion splicing can be summarized as the following.

  • Optical fiber stripping
  • Fiber cleaving
  • Fiber alignment
  • Fiber welding
  • Insertion loss estimation
  • Pull tension strength testing
  • Splice protection with fusion splice sleeve

What are the Different Splicing Types?

In three types fusion splicing environment and applications can be roughly divided:



  • Field splicing
  • Factory splicing
  • Laboratory splicing

The assembly of undersea fiber cables aboard fiber deployment ships is a very important example of field splicing. One example of factory splicing could be the assembly of fiber optic passive devices such as a WDM. An example of laboratory splicing is performed by researchers by fusion splicing the newest developed fibers so that they can test their compatibility with the existing industry-standard fibers.

Fiber fusion splicing includes various concepts and fiber tool kit from many subjects including mechanical engineering, heat transfer, material science, optical waveguide theory, fluid mechanics, and more.


Monday, January 10, 2022

Get to Know About Polishing of Fiber Optic Connector

Failure of the component or failure of the whole system can be caused by any contamination in the fiber connection. An important component in fiber connection is the Fiber optic connector. As we know, end-surface treatment is required by fiber optic cables for proper light transmission. For almost all glass-based fibers, Polishing and fiber polishing pad is an essential step with diameters and cladding larger than 200 microns. Polishing is also needed by all fiber optic connectors.



Why Polishing is needed by Fiber Optic Connector?

What the connector return loss will be determined by the connector end-face preparation will determine once the fiber optic cable is terminated with a particular connector. Through the light reflected into the light source and the connector in the forward direction by the connector surface, the back reflection is the ratio between the light propagation.

Utilizing narrow linewidth sources such as DFB lasers, minimizing the back reflection is very important in analog and high-speed fiber-optic links, which are prone to mode fluctuations and hopping in their output. To make fiber optic connectors work perfectly, Polishing and fiber polishing film is one of the essential procedures. That’s why we need polishing of fiber optic connector.

Ways of Polishing Fiber Connector

On the fiber connectors, there are several different polish options. Due to the extreme accuracy requirement of today’s fiber connections especially for production polishing is mostly performed by a machine.

For all types of fiber optic connectors, the common machine polishing tools, such as other fiber optic polishing machine kits and fiber optic polishing machines as well as fiber polishing fixtures are used. Fiber optic polishing puck and Polishing paper or some cleanser are needed by the manual fiber optic connector polishing.



Conclusion

As it is an art, Fiber polishing and fiber polishing epoxy is as much a science. Proper polishing of fiber optic polishing is critical for optimum results to a certain extent. However, on your technique or your polishing machine, it also depends. So, for your polishing tool and fiber optic connector, selecting the right company or the right machine is essential.


Monday, December 13, 2021

All about Fiber-Optic Interferometry Technology

Optical fiber interferometer has been developed for over a hundred years and is used as precision metrology that is widely used in the optical system for extremely accurate measurements for a variety of physical quantities in laboratories as well as in industry fields. The base of optical interferometry technology lies in the interference of light beams that are launched from another monochromatic source, same light source, or laser source. It propagates through space or dielectric mediums such as glass waveguides with different optical paths. It then arrives simultaneously at a point in space or on the surface of an object. Hence the light intensity will differ periodically with the optical path difference, which is the optical phase difference, between the beams. This is a much-known process of light interference.



In the wavelength scale of the optical light source, a very small change in the optical path difference can induce an obvious and measurable change in the intensity of the interference light. So, by measuring the changes of interference light intensity, one can obtain information regarding the changes of optical paths in an optical measurement system. The optical interferometer is built as an instrument due to this mechanism and for accurate measurements of many physical quantities, such as the displacement, velocity, and distance, as well as for tests of optical systems it is widely used.

Optical interferometry technology has made great progress due to huge developments of laser and fiber optic technologies and has also evolved from classical bulk optics to fiber optics. Applications of the optical interferometers have been expanded to areas such as underwater acoustic detections, voltage and current measurements inside electric power systems, and biomedical pressure monitoring in living bodies but everything depends on fiber-optic technologies.

One major application of the optical interferometer is that it is used as the optical interferometer sensor for the detection of unknown and uncontrolled physical parameters. Fiber-optic-based interferometers use optical fibers as sensor light carriers. From fiber-connected transducers or directly from fibers it obtains the detection information.



In general, the preparation of optical power meters and fiber-optic transducers/sensors is done from totally dielectric materials that are chemically inert and completely immune to electromagnetic interference (EMI).